
CSCI5550 Advanced File and Storage Systems

Lecture 09:

Persistent Key-Value Stores

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 2

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

The Log-Structured Merge-Tree (Acta Informatica'96)

Persistent Key-Value Store

• Persistent key-value (KV) stores play a critical role

in a variety of modern data-intensive applications:

– Such as e-commerce, cloud data, and social networking.

• In a KV store, data are stored as key-value pairs.

– A unique key is associated with a value of “any form”.

CSCI5550 Lec09: Persistent Key-Value Stores 3

K1 AAA, BBB, CCC

K2 AAA, BBB

K3 AAA, DDD

K4 30/03/2020

Key Value

K5 CSCI5550put/insert(key, value)

get/lookup(key)

delete(key)

Log-Structured Merge-Tree (LSM-Tree)

• For write-intensive workloads, KV stores based on

LSM-tree have become the state of the art.

– Various distributed or local stores built on LSM-trees are

widely deployed in largescale environments, such as:

• BigTable and LevelDB at Google;

• Cassandra, Hbase, and RocksDB at Facebook; and

• PNUTS at Yahoo!

• The main advantage of LSM-trees is that they

maintain sequential access patterns for writes.

– The success of LSM-tree is tied closely to its usage upon

classic hard-disk drives (HDDs): In which, random I/Os are

over 100× slower than sequential ones.

CSCI5550 Lec09: Persistent Key-Value Stores 4

Overall Architecture of LSM-Tree

• An LSM-tree consists of a number of components of

exponentially increasing sizes, C0 to Ck:

CSCI5550 Lec09: Persistent Key-Value Stores 5

C1~Ck are disk-resident,

append-only B-trees.

C0 is a memory-resident,

update-in-place sorted tree.

5

3

1 4

8

6 9

B

A C

E

F

D

E

F’

D

A C B F E D F’ E DDisk

Memory

LSM-Tree: Insertion & Compaction (1/2)

• Key-value pairs are always inserted into the LSM-

tree via the in-memory C0.

CSCI5550 Lec09: Persistent Key-Value Stores 6

• Once C0 reaches its size

limit, C0 will be merged

with the on-disk C1 by

the compaction process.

– The newly merged tree

C1’ will be appended into

disk, replacing the old C1.

• Compaction also takes

place for all on-disk

components, when any

Ci reaches its size limit.

Key-value pairs

• During the compaction, the newly merged blocks are

written to new disk positions.

CSCI5550 Lec09: Persistent Key-Value Stores 7

LSM-Tree: Insertion & Compaction (2/2)

LSM-Tree: Lookup

• To serve a lookup operation, LSM-trees may need to

search over multiple components.

CSCI5550 Lec09: Persistent Key-Value Stores 8

– Components are scanned

in a cascading fashion,

from C0 to the smallest

component Ci containing

the requested data.

• Why? C0 contains the

freshest data, followed by

C1, and so on.

– Hence LSM-trees are

more useful when inserts

are more dominant than

lookups.

Outline

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 9

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

https://github.com/google/leveldb

2 in-memory

sorted skiplists
(i.e., memtable and

immutable memtable)

7 “levels” (L0 to L6)

of on-disk

sortedstring
tables (SSTables)

LevelDB (by Google)

• LevelDB is a key-value store based on LSM-trees.

CSCI5550 Lec09: Persistent Key-Value Stores 10

10x

10x

10x

10x

...

Review: Sorted Skiplist

• A skip list is built in multiple layers:

– The bottom layer is an ordinary ordered linked list.

– The higher layers allow you to “skip over” many items

when searching over an particular item.

– It offers 𝑂(log 𝑛) search complexity and 𝑂(log 𝑛) insertion

complexity within an ordered sequence of 𝑛 elements.

CSCI5550 Lec09: Persistent Key-Value Stores 11
https://en.wikipedia.org/wiki/Skip_list

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/skiplists.pdf

Find 96?

Review: Sorted String Table

• A sorted string table (SSTable) is simply a file which

contains a set of arbitrary, sorted key-value pairs.

– Strength: High throughput for sequential I/O workloads

– Weakness: Large I/O rewrite for random insert/deletion

CSCI5550 Lec09: Persistent Key-Value Stores 12https://medium.com/databasss/on-disk-io-part-3-lsm-trees-8b2da218496f

LevelDB: Insertion & Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 13

Foreground:

All inserted KV

pairs are first

appended to an

on-disk log file

to enable

recovery.

Foreground: The KV

pairs are then inserted into

the in-memory memtable.

Background: Once the

memtable is full, it is converted

into an immutable memtable.

Background:

A compaction

thread then

flushes the
immutable
memtable
into the disk.

Background: Once the total size

of a level Li exceeds its limit, the

compaction thread will choose

one file from Li, merge sort with

all overlapped files at Li+1, and

generate new Li+1 SSTable files.

LevelDB: Lookup

• LevelDB searches for a requested KV pair as follows:

 memtable, immutable memtable, files of L0 to L6 in order

CSCI5550 Lec09: Persistent Key-Value Stores 14

Since LevelDB allows

SSTable files in L0 to

contain overlapping

keys, multiple files at

L0 may be searched.

The memtable always

contain the freshest

data, followed by the

immutable memtable.

The total number of

file searches can be

bounded, since keys

do not overlap among

files in levels L1 to L6.

Outline

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 15

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

WiscKey - Separating Keys from Values in SSD-conscious Storage (FAST'16)

Write and Read Amplification (1/2)

• Write and read amplification are major problems in

LSM-tree based key-value stores such as LevelDB.

– Write (Read) Amplification: the ratio between the amount

of data written to (read from) the storage and the amount of

data requested by the user.

• The source of write amplification in LevelDB:

– LevelDB writes more data than necessary to achieve

mostly-sequential disk access.

• The sources of read amplification in LevelDB:

– To lookup a key-value pair, LevelDB needs to check

multiple SSTable files in multiple levels.

– To find a key-value pair within a SSTable file, LevelDB

needs to read multiple metadata blocks within the file.

CSCI5550 Lec09: Persistent Key-Value Stores 16

Write and Read Amplification (2/2)

• Experimental Setup:

– Consider two different database sizes for the initial load

– Load a database with 16B-key, 1KB-value pairs

– Lookup 100,000 entries from the database

– Choose keys randomly from a uniform distribution

CSCI5550 Lec09: Persistent Key-Value Stores 17

Write/Read amplification

increases with the

dataset size!

Key-Value Separation

• The major performance cost of LSM-trees is the

compaction, which constantly sorts SSTable files.

• Key-Value Separation: Compaction only needs to

sort keys, while values can be managed separately.

– Only the “location” (addr) of value is stored in the LSM-tree,

while real values are stored in a separate value log file.

CSCI5550 Lec09: Persistent Key-Value Stores 18

Benefits of Key-Value Separation

• The LSM-tree of WiscKey becomes much smaller

than that of LevelDB.

– Compacting only keys could significantly reduce the write

amplification, especially for workloads that have a

moderately large value size.

– A significant portion of the LSM-tree can be possibly

cached in memory (to reduce the read amplification).

• A lookup may search fewer levels of table files in the LSM-tree.

• Most lookups only require a single random read (for the value).

CSCI5550 Lec09: Persistent Key-Value Stores 19

LSM-tree

of LevelDB

Value Log

of WiscKeyLSM-tree

of WiscKey

memory

disk

Challenges of Key-Value Separation (1/3)

• Key-value separation may leads to many challenges:

• Challenge #1: Since keys and values are separately

stored in WiscKey, range queries require multiple

random reads, which are not efficient to the disk.

• The design of WiscKey is highly SSD optimized.

– Parallel random reads with a fairly large request size can

fully utilize the internal parallelism of SSD, getting

performance similar to sequential reads.

CSCI5550 Lec09: Persistent Key-Value Stores 20

LSM-tree

of WiscKey

disk

LSM-tree of LevelDB

SSD

memory

sst
Value Log

of WiscKey

Challenges of Key-Value Separation (2/3)

• Challenge #2: Since WiscKey does not compact

values, it needs a special garbage collector to reclaim

space occupied by deleted/overwritten values in vLog.

• WiscKey targets a lightweight and online GC: It only

keeps valid values in a contiguous range of vLog.

– Valid values are appended back to the head of vLog.

– Both keys and values should be kept in vLog to determine

whether a value is valid or not (by querying the LSM-tree).

CSCI5550 Lec09: Persistent Key-Value Stores 21

New ValuesOld Values

Challenges of Key-Value Separation (3/3)

• Challenge #3: Since WiscKey’s architecture stores

values separately from the LSM-tree, obtaining the

same crash guarantees can appear complicated.

• WiscKey provides the following crash guarantees:

– If the key cannot be found in the LSM-tree:

• WiscKey informs the user that the key was not found.

– If the key can be found in the LSM-tree:

• WiscKey verifies whether the value address retrieved from the

LSM-tree falls within the current valid range of vLog and whether

the value found corresponds to the queried key.

• If the verifications fail, WiscKey deletes the key from the LSM-tree,

and informs the user that the key was not found.

– WiscKey is not able to recovery the values, even if which

had been written in vLog before the crash.

CSCI5550 Lec09: Persistent Key-Value Stores 22

Outline

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 23

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

SLM-DB - Single-Level Key-Value Store with Persistent Memory (FAST'19)

State-of-the-art LSM-tree: LevelDB

• Optimized for heavy write application.

• Designed for slow hard disk drives (HDDs).

• Suffered from serious write and read amplification.

CSCI5550 Lec09: Persistent Key-Value Stores 24

Motivation: Byte-Addressable PM

• How can the byte-addressable persistent memory

(PM) enhance the performance of key-value stores?

CSCI5550 Lec09: Persistent Key-Value Stores 25

PM

PM

…

Idea: Single-Level Merge with PM

 Exploit PM to maintain a B+-tree index and stage KV

pairs in a PM resident buffer (i.e., C0).

 Organize KV pairs in a single level on disks (i.e., C1).

 Avoid write-ahead logging (WAL) and multi-leveled

merge/compaction to reduce write amplification.

CSCI5550 Lec09: Persistent Key-Value Stores 26

Single-Level Merge DB (SLM-DB)

• Persistent memtable avoids the write-ahead logging

and provides stronger consistency than LevelDB.

• Persistent B+-tree avoids the on-disk multi-leveled

merge structure and enables fast lookup.

– No need to merge KV pairs of one-level SST files at all!

CSCI5550 Lec09: Persistent Key-Value Stores 27

Persistent Memtable

CSCI5550 Lec09: Persistent Key-Value Stores 28

Selective Compaction

• Compaction operation is still needed:

 To collect garbage of obsolete KV pairs, and

 To improve the sequentiality of KV pairs in SSTables.

• SLM-DM performs the compaction in a selective way.

– A background thread compacts only candidate SSTables.

CSCI5550 Lec09: Persistent Key-Value Stores 29

range query
(10, 13)

Summary

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 30

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

